Home
Class 10
MATHS
[" If "cos(alpha+beta)=0," then "sin(alp...

[" If "cos(alpha+beta)=0," then "sin(alpha-beta)" can be reduced to "],[[" (A) "cos beta," (R) "cos alpha]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos (alpha+beta)=0 , then sin(alpha-beta) canbe reduced to : (a) cosbeta (b) cos2beta ( c) sinalpha (d) sin2alpha

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

If cot(alpha+beta)=0, then sin(alpha+2 beta) can be (a)-sin alpha(b)sin beta(c)cos alpha(d)cos beta

Find the value of f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)|

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

Evaluate |[cos alpha cos beta, cos alpha sin beta, -sin alpha],[ -sin beta, cos beta, 0],[ sin alpha cos beta, sin alpha sin beta, cos alpha]|

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]