Home
Class 10
MATHS
[" (xiii) "sqrt(3),sqrt(6),sqrt(9),sqrt(...

[" (xiii) "sqrt(3),sqrt(6),sqrt(9),sqrt(12),," (xiv) "l^(2),3^(2),5^(2),7^(2),]

Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt(7))/(sqrt(5)-sqrt(3))

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

(5sqrt(7)+2sqrt(7))(6sqrt(7)+3sqrt(7))=?

2sqrt(2)xx3sqrt(3)xx5sqrt(2)xx9sqrt(3)=?

(2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals

Add (i) (2sqrt(3)-5sqrt(2)) and (sqrt(3) + 2sqrt(2)) (ii) (2sqrt(2) + 5sqrt(3) - 7 sqrt(5) and (3sqrt(3)-sqrt(2) + sqrt(5)) (iii) ((2)/(3) sqrt(7) -(1)/(2)sqrt(2)+6sqrt(11)) and ((1)/(3)sqrt(7) + (3)/(2)-sqrt(11))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) (ii) (5+2sqrt(3))/(7+4sqrt(3)) (iii) (1+sqrt(2))/(3-2sqrt(2)) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6)) (v) (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18)) (vi) (2sqrt(3)-sqrt(5))/(2sqrt(3)+3sqrt(3))

Simplify by raationalising the denominator. (i) (7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)) (ii) (2sqrt(6) -sqrt(5))/(3sqrt(5)-2sqrt(6))

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

The value of the determinant |{:(sqrt(6),2i,3+sqrt(6)i),(sqrt(12),sqrt(3)+sqrt(8)i,3sqrt(2)+sqrt(6)i),(sqrt(18),sqrt(2)+sqrt(12)i,sqrt(27)+2i):}| is (where i= sqrt(-1)