Home
Class 12
MATHS
lim(x->oo) x(log(x+1)-logx)=...

`lim_(x->oo) x(log(x+1)-logx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)x(log(x+1)-log x)=

lim_(x->oo) cos log((x-1)/(x))

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

The value of lim_(x->oo)((log)_e((log)_e x)/(e^(sqrt(x)))i s___________

Prove that: lim_(h rarr 0) (log(x+h)-logx)/(h)=(1)/(x)

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) none of these

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2) equals 0 (b) -1 (c) 1 (d) none of these