Home
Class 10
MATHS
x^(2)+k(4x+k-1)+2=0...

x^(2)+k(4x+k-1)+2=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of k for which roots of the following equations are real and equal: (i) 12x^(2)+4kx+3=0 (ii) kx^(2)-5x+k=0 (iii) x^(2)+k(4x+k-1)+2=0 (iv) x^(2)-2(5+2k)x+3(7+10k)=0 (v) 5x^(2)-4x+2+k(4x^(2)-2x-1)=0 (vi) (k+1)x^(2)-2(k-1)x+1=0 (vii) x^(2)-(3k-1)x+2k^(2)+2k-11=0 (viii) 2(k-12)x^(2)+2(k-12)x+2=0

If -2 is a root of the equation 3x^(2)+7x+p=0, find the value of k so that the roots of the equation x^(2)+k(4x+k-1)+p=0 are equal.

if 2x^(2) + 4x - k = 0 is same as (x-5) (x+k/10) = 0 , then find the value of k.

If y = 2x + k " touches " x^(2) + y^(2) - 4x - 2y = 0 , then k=

Find the value of k for which the given equation has real and equal roots: 2x^(2)-10x+k=09x^(2)+3kx+4=012x^(2)+4kx+3=02x^(2)+3kx+4=02x^(2)-kx+1=0kx^(2)-5x+k=0x^(2)+kx+1=0kx^(2)-5x+k=0x^(2)+k(4x+k-1)+2=0x^(2)-2x(1+3k)+7(x+2k)=0(k+1)x^(2)-2(k-1)x+1=0

If x - 1 is a factor of x^(5) - 4x^(3) +2 x^(2) - 3x + k = 0 then k is

If - 1 + i is a root of x^(4) + 4x^(3) + 5x^(2) + 2x + k = 0 then k =

If x = k be a solution of the quadratic equation x^(2) + 4x + 3 = 0 , then k = - 1 and

Let f(x)=(a_(2k)x^(2k)+a_(2k-1)x^(2k-1)+...+a_(1)x+a_(0))/(b_(2k)x^(2k)+b_(2k-1)x^(2k-1)+...+b_(1)x+b_(0)) , where k is a positive integer, a_(i), b_(i) in R " and " a_(2k) ne 0, b_(2k) ne 0 such that b_(2k)x^(2k)+b_(2k-1)x^(2k-1)+...+b_(1)x+b_(0)=0 has no real roots, then