Home
Class 12
MATHS
Prove that (sin(B-C))/(cos B cos C)+(sin...

Prove that `(sin(B-C))/(cos B cos C)+(sin(C-A))/(cos C cos A)+(sin(A-B))/(cos A cos B)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin (BC)) / (cos B cos C) + (sin (CA)) / (cos C cos A) + (sin (AB)) / (cos A cos B) = 0

Prove that: ("sin"(A-B))/(cos A cosB)+(sin(B-C))/(cos B cos C)+("sin"(C-A))/(cos C cos A)=0

Prove that: ("sin"(A-B))/(cos A cosB)+(sin(B-C))/(cos B cos C)+("sin"(C-A))/(cos C cos A)=0

(sin(A - B))/(cos A cos B) + (sin (B - C))/( cos B cos C) + (sin(C - A))/(cos C cos A) is

Simplify: 1 + (sin(A - B))/(cos A cosB) + (sin (B - C))/(cos B cos C) + (sin (C - A))/(cos C cos A)

Prove that: sin(B-C)cos(A-D) + sin(C-A) cos (B-D) + sin(A-B) cos(C-D) = 0

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C

Prove that: sin(B-C)cos(A-D)+sin(C-A)cos(B-D)+sin(A-B)cos(C-D)

Prove that cos (A + B) cos C - cos (B + C) cos A = sin B sin (C - A)