Home
Class 10
MATHS
If tanA=ntanB and sinA=msinB , Prove tha...

If `tanA=ntanB` and `sinA=msinB ,` Prove that `cos^2A=(m^2-1)/(n^2-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A =ntanB , sinA =msinB , prove that , cos^2A=(m^2-1)/(n^2-1) .

If tanA=ntanBandsinA=msinB then sec^(3)A((m^(2)-1)/(n^(2)-1))^((3)/(2) =?

If tanA=n tan B and sinA=m sin B, then the value of cos^2 A is यदि tanA=n tan B और sinA=m sin B, तो cos^2 A का मान है

Prove that : cotA-tanA=(2cos^2A-1)/(sinAcosA)

If tanA+sinA=m and tanA-sinA=n , then prove that m^(2)-n^(2)=4sqrt(mn) .

If tanA+sinA=m and tanA-sinA=n , then prove that m^(2)-n^(2)=4sqrt(mn) .

Prove that: (sin2A)/(1+cos2A)=tanA

Prove that: (sin2A)/(1+cos2A)=tanA

Prove that secA(1-sinA)(secA+tanA)=1

If 3tanA tanB=1 , then prove that 2cos(A+B)=cos(A-B)