Home
Class 12
MATHS
2^((log)2(x-3))+2(x-3)-12=0...

`2^((log)_2(x-3))+2(x-3)-12=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x backslash2(log)_(3)(x-2)+(log)_(3)(x-4)^(2)=0

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2)(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-{-1,-2}

The domain of f(x)=((log)_(2)(x+3))/(x^(2)+3x+2) is R-{-1,2}(b)(-2,oo)R-{-1,-2,-3}(d)(-3,oo)-(-1,-2}

If (2)^(log_(2)x^(2))-(3)^(log_(3)(x))-6=0 ,then sum of all possible values of x is

The value of x for which the equation 5*3^(log_(3)x)-2^(1-log_(2)x)-3=0

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)