Home
Class 11
MATHS
" If "2" If "X={4^(n)-3n-1:n in N}" and ...

" If "2" If "X={4^(n)-3n-1:n in N}" and "Y={9(n-1):n in N}," prove that "X sub Y" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={8^(n)-7n-1,n in N} and Y={49(n-1);n in N}, then prove that X is a subset of Y

If X = {4 ^(n)-2n-1: n in N} and Y={9(n -1) : n in N}, then Xnn Y=