Home
Class 11
MATHS
[" Sare continuous in "[0,a],f(a-x)=f(x)...

[" Sare continuous in "[0,a],f(a-x)=f(x),g(a-x)=-g(x)" ,"],[" 3h "(x)-4h(a-x)=5" .Then prove that "int f(x)g(x)h(x)dx=0" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

f,g,h, are continuous in [0,a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5 Then prove that int_(0)^(a)f(x)g(x)h(x)dx=0

f,g,h are continuous in [0,a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5 . Then prove that int_(0)^(a)f(x)g(x)h(x)dx=0 .

f,g, h , are continuous in [0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5. Then prove that int_0^af(x)g(x)h(x)dx=0

f,g, h , are continuous in [0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5. Then prove that int_0^af(x)g(x)h(x)dx=0

f,g, h , are continuous in [0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5. Then int_0^af(x)g(x)h(x)dx=

If f and g are continuous functions on [0,a] such that f(x)=f(a-x) and g(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx

If f and g are continuous functions on [0,a] satisfying f(x)=(a-x) and g(x)+g(a-x)=2 , then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx .

If fandg are continuous function on [0,a] satisfying f(x)=f(a-x)andg(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these