Home
Class 12
MATHS
cos(tan^(-1)(15)/(8)-sin^(-1)(7)/(25))=(...

cos(tan^(-1)(15)/(8)-sin^(-1)(7)/(25))=(297)/(425)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: cos(2tan^(-1)((1)/(7)))=sin(4tan^(-1)((1)/(3)))

Prove that 2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))=sin^(-1)((31)/(25sqrt(2)))

Show that cos(2Tan^(-1).(1)/(7))=sin(2Tan^(-1).(3)/(4))

Show that: cos(2tan^(-1)(1/7))=sin(4tan^(-1)(1/3))

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Evaluate each of the following: sin((sin^(-1)7)/(25)) (ii) sin((cos^(-1)5)/(13))( iii) sin((tan^(-1)(24))/(7))

If tan theta=(3)/(4), then cos^(2)theta-sin^(2)theta=(7)/(25)(b)1(c)-(7)/(25) (d) (4)/(25)

Prove that : 2 "tan"^(-1)1/(2)+"tan"^(-1)1/(7)="sin"^(-1)31/(25sqrt(2)) .

Show that : cos(2\ tan^(-1)(1/7 ))=sin(4\ tan^(-1) (1/3) )