Home
Class 12
MATHS
Consider the sequence S=7+13+21+31+".......

Consider the sequence `S=7+13+21+31+".....+"T_(n)` , find the value of `T_(70)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

3, 7, 13, 21, 31, ….

51+53+55++t_(n)=5151 Then find the value of t_(n)

51+53+55++t_(n)=5151. Then find the value of t_(n)

If 51+53+55+…+ t_(n) = 5151 , then find the value of t_(n) .

A sequence is defined as: t_(n+1)=t_(n)-t_(n-1) , where t_(n) denotes the n^(th) term of the sequence. If t_(1) =1 and t_(2)=5 , find the sum of the first 100 terms of the above sequence.

Consider the sequence defined by t_(n)=an^(2)+bn+c If t_(2)=3,t_(4)=13 and t_(7)=113 , show that 3t_(n)=17n^(2)-87n+115 .

In an A.P.if S_(1)=T_(1)+T_(2)+T_(3)+....+T_(n)(nodd)dot S_(2)=T_(2)+T_(4)+T_(6)+.........+T_(n) then find the value of S_(1)/S_(2) in terms of n.

Let S be the sum of the first n terms of the arithmetic sequence 3, 7, 11, ...., and let T be the sum of the first n terms of the arithmetic sequence 8 , 10 , 12 ,.... For n gt 1 , S = T for

In an A.P. if S_1=T_1+T_2+T_3+.....+T_n (n is odd) S_2=T_2+T_4+T_6+.........+T_(n-1) , then find the value of S_1//S_2 in terms of ndot

In an A.P. if S_1=T_1+T_2+T_3+.....+T_n (n is odd) S_2=T_2+T_4+T_6+.........+T_(n-1) , then find the value of S_1//S_2 in terms of ndot