Home
Class 11
MATHS
a=(1+i)/(sqrt(2)) find the value of a^6...

`a=(1+i)/(sqrt(2))` find the value of `a^6+a^4+a^2+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

1.If Z=(1+i)/(sqrt(2)) find the value of Z^(6)+Z^(4)+Z^(2) .

Find the value of 1+i^2+i^4+i^6

If a=(sqrt(2)+1)/(sqrt(2)-1) and b=(sqrt(2)-1)/(sqrt(2)+1) ,then find the value of a^(2)+b^(2)-4ab

If a=6+2sqrt(3) find the value of a-(1)/(a)

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

Find the value of 1+i^2+i^4+i^6++i^(2n)

Find the value of 1+i^2+i^4+i^6++i^(2n)