Home
Class 11
MATHS
If the radical axis of the circles x^2+y...

If the radical axis of the circles `x^2+y^2+2gx+2fy+c=0` and `2x^2+2y^2+3x+8y+2c=0` touches the circle `x^2+y^2+2x+1=0` , show that either `g=3/4` or `f=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the radical axis of the circles x^2 + y^2 + 2gx + 2fy + c = 0 and 2x^2 + 2y^2 + 3x + 8y+2c=0 touches the circle x^2 + y^2 + 2x - 2y + 1 = 0 , show that either g= 3/4 or f = 2 .

The radical axis of the circles x^(2)+y^(2)+2gx+c=0 and 2x^(2)+2y^(2)+3x+2y+2c=0 touches the circle x^(2)+y^(2)+y^(2)+2x+2y+1=0 if

Two circles x^(2) + y^(2) - 2x - 4y = 0 and x^(2) + y^(2) - 8y - 4 = 0

Find the equation of radical axis of the circles x^(2)+y^(2)-3x+5y-7=0 and 2x^(2)+2y^(2)-4x+8y-13=0 .

If the origin lies inside the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 , then

Equation of radical axis of the circles x^(2) + y^(2) - 3x - 4y + 5 = 0 and 2x^(2) + 2y^(2) - 10x - 12y + 12 = 0 is