Home
Class 11
MATHS
The function f(x)={[(1-cos x)/(x^(2)),,x...

The function `f(x)={[(1-cos x)/(x^(2)),,x!=0],[(1)/(2),,x=0]` ,at `x=0` is continuous or not?

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) {((1 - cos 4x)/(8x^(2))",",x !=0),(" k,",x = 0):} is continuous at x = 0 then k = ?

The function,f(x)=cos^(-1)(cos x) is

For the function f(x)=x cos((1)/(x)),x>=1

A: The functions f(x)=(1+cos^(3)x)/(x^(2))x!=0:f(0)=-(3)/(2) is continuous at x=0R: A function is continuous at x=a if Lt_(x rarr a)f(x)=f(a)

If the function f(x)={[(cos x)^((1)/(x)),x!=0k,x=0k,x=0]} is continuos at x=0 then the value of k]}

The function f(x)=x cos((1)/(x^(2))) for x!=0,f(0)=1 then at x=0,f(x) is

f(x)=(1-cos alpha x)/(x sin x), for x!=0,(1)/(2), for x=0 If f is continuous at x=0, then

If the function f(x)=(e^(x^(2))-cos x)/(x^(2)) for x!=0 is continuous at x=0 then f(0)

For the function f(x)=x "cos" 1/x, x ge1