Home
Class 12
MATHS
Statement 1 :If the matrices, A ,B ,(A+B...

Statement 1 :If the matrices, `A ,B ,(A+B)` are non-singular, then `[A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1)dot` Statement 2: `[A(A+B)^(-1)B]^(-1)=[A(A^(-1)+B^(-1))B]^(-1)` `=[(I+^A B^(-1))B]^(-1)` `=[(B^+A B^(-1))B]^(-1)` `=[(B^+A I)]^(-1)` `=[(B^+A)]^(-1)` `=B^(-1)^+A^(-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1) .

If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1) .

Statement 1: If the matrices,A,B,(A+B) are non-singular,then [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1). Statement 2:[A(A+B)^(-1)B]^(-1)=[A(A^(-1)+B^(-1))B]^(-1)=[(I+AB^(-1))B]^(-1)=[(B+AB^(-1))B]^(-1)=[(B+AI)]^(-1)=[(B+A)]^(-1)=B^(-1)+A^(-1)

If the matrices, A, B and (A+B) are non-singular, then prove that [A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1) .

If the matrices, A, B and (A+B) are non-singular, then prove that [A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1) .

If the matrices, A, B and (A+B) are non-singular, then prove that [A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1) .

If the matrices A, B (A + B) are non - singular, then [A(A+B)^(-1) B]^(-1) . a) A^(-1)B^(-1) b) B^(-1)+A^(-1) c) B^(-1)A^(-1) d)None of these

If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=

If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=