Home
Class 12
MATHS
If (sin"x")^y=x+y ,p rov et h a t(dy)/(d...

If `(sin"x")^y=x+y ,p rov et h a t(dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sinx)^y=x+y , prove that (dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)

If (sin x)^(y)=x+y, prove that(dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If (sin x)^(y)=x+y, prove that (dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If (sinx)^y=(cosy)^x ,p rov et h a t(dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)

If x y=4,p rov et h a tx((dy)/(dx)+y^2)=3y

If x y^2=1,p rov et h a t2(dy)/(dx)+y^3=0

If x^ydoty^x=1,p rov et h a t(dy)/(dx)=-(y(y+xlogy)/(x(ylogx+x)

If (sin"x")^y=(cos"y")^x , prove that (dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)

If e^x+e^y=e^(x+y),p rov e t h a t(dy)/(dx)+e^(y-x)=0

If (sinx)^y=(cosy)^x , prove that (dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)