Home
Class 12
MATHS
l(I=)(1+log t)/(t^(2)),y=(3+2log t)/(t),...

l_(I=)(1+log t)/(t^(2)),y=(3+2log t)/(t),t>0," prove that "y(dy)/(dx)-2x((dy)/(dx))^(2)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = (1+logt)/t^2, y = (3+2logt)/t, t > 0 , prove that y(dy/dx) - 2x(dy/dx)^2 = 1

if x=(1+ln t)/(t^(2)) and y=(3+2ln t)/(t) then show that y(dy)/(dx)=2x((dy)/(dx))^(2)+1

If x=(1+logt)/t^(2),y=(3+2logt)/t,tgt0 , prove that : dy/dx=t

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t),quad find (dy)/(dx)

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x+y=t+(1)/(t) and x^(3)+y^(3)=t^(3)+(1)/(t^(3)) then prove that (dy)/(dx)=-(1)/(x^(2))