Home
Class 11
MATHS
Statement 1 : If two circles x^2+y^2+2gx...

Statement 1 : If two circles `x^2+y^2+2gx+2fy=0` and `x^2+y^2+2g^(prime)x+2f^(prime)y=0` touch each other, then `f^(prime)g=fg^(prime)dot` Statement 2 : Two circles touch other if the line joining their centers is perpendicular to all possible common tangents.

Promotional Banner

Similar Questions

Explore conceptually related problems

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then f'g =fg'.

If two circles x^2+y^2+2gx+2fy=0 and x^2+y^2+2g'x+2f'y=0 touch each other , then ((f')/(f))(g/(g')) =___

If circles x^(2) + y^(2) + 2g_(1)x + 2f_(1)y = 0 and x^(2) + y^(2) + 2g_(2)x + 2f_(2)y = 0 touch each other, then

If two circles x^(2) + y^(2) - 2ax + c = =0 and x^(2) + y^(2) - 2by + c = 0 touch each other , then c =

If the circles x^(2)+y^(2)+2gx+2fy=0and x^(2)+y^(2)+2g'x+2f'=0 touch each other then prove that f' f = fg .

If circles x^(2) + y^(2) = 9 " and " x^(2) + y^(2) + 2ax + 2y + 1 = 0 touch each other , then a =

If two circles and a(x^(2)+y^(2))+bx+cy=0 and A(x^(2)+y^(2))+Bx+Cy=0 touch each other,then