Home
Class 10
MATHS
If a,b,c are in G.P. then prove that (1)...

If a,b,c are in G.P. then prove that `(1)/(a+b),(1)/(2b),(1)/(b+c)` are also in A.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (b+c-a)/(a) , (c+a-b)/(b) , (a+b-c)/(c) are in A.P. then prove that (1)/(a),(1)/(b),(1)/(c) are also in A.P.

If (b-c)^(2),(c-a)^(2),(a-b)^(2) are in A.P.then prove that (1)/(b-c),(1)/(c-a),(1)/(a-b) are also in A.P.

If (b-c)^(2), (c-a)^(2), (a-b)^(2) are in A.P. then prove that, (1)/(b-c), (1)/(c-a), (1)/(a-b) are also in A.P.

If (b-c)^(2) , (c-a)^(2), (a-b)^(2) are in A.P. then prove that (1)/(b-c) , (1)/(c-a), (1)/(a-b) are also in A.P.

If (b+c-a)/(a),(b+c-a)/(b),(a+b-c)/(c), are in A.P.prove that (1)/(a),(1)/(b),(1)/(c) are also in A.P.

If a (b +c), b (c+a) , c (a +b) are in A.P. , prove that (1)/(a), (a)/(b), (1)/(c ) are also ln A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.