Home
Class 11
MATHS
lim(n rarr0)=(sin x^(0))/(x)...

lim_(n rarr0)=(sin x^(0))/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: (lim)_(x rarr0)(sin x^(0))/(x)

lim_(x rarr0)(sin x^(@))/(x)

lim_(x rarr0)(sin x)^(x)

lim_(x rarr0)(sin(x^(o)))/(x)

lim_(x rarr0)[sin x]

lim_(x rarr0)(sin(x)/(4))/(x)

Evaluate : lim_(x rarr 0)""(sin x^(@))/(x)

lim_(x rarr 0) (sin x^(o) )/x=

m,n,in1^(+), then lim_(x rarr0)(sin x^(n))/((sin x)^(m)) equals

(2) lim_(n rarr0) (n!sin x)/(n)