Home
Class 12
MATHS
[Q5quad yquad A=[[4,b],[c,(1+bc)/(a)]]" ...

[Q5quad yquad A=[[4,b],[c,(1+bc)/(a)]]" find "A^(-1)" and prove "],[faA^(-1)=(a^(2)+bc+1)I_(2)-aA]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix A=[abc(1+bc)/(a)] and show that aA^(-1)=(a^(2)+bc+1)I-aA

Find the inverse of the matrix A = {:[(a,b),(c,(1+bc)/a)] and show that : aA^-1 = (a^2+bc+1)I-aA

Find the inverse of the matrix A = [[a,b],[c, frac{1+bc}{a}]] and show that: aA^-1 = (a^2 + bc + 1) I - aA.

Find the value of det[[1,a,a^(2)-bc1,b,b^(2)-ac1,c,c^(2)-ab]]

Prove that det[[1,a,a^(2)-bc1,b,b^(2)-ca1,c,c^(2)-ab]]=0

If ^nP_(r-1):^nPr: ^nP_(r+1)=a,b:c, prove that b^2=a(b+c)

If A = {:[(1,2),(0,1)], B = [(1,-3),(2,4)] and C = [(1,-1),(-1,2)] then prove that : A(BC) = (AB)C

If A={:[(1,2,0),(-1,0,1),(1,2,1)]:},B={:[(1,2),(2,1),(-1,1)]:}andC={:[(1,0,0,1),(1,2,1,2)]:} Find A(BC), (AB)C and prove that A(BC)=(AB)C.

If A={:[(1,2,0),(-1,0,1),(1,2,1)]:},B={:[(1,2),(2,1),(-1,1)]:}andC={:[(1,0,0,1),(1,2,1,2)]:} Find A(BC), (AB)C and prove that A(BC)=(AB)C.