Home
Class 12
MATHS
The number of x in [0,2pi] for which s...

The number of `x in [0,2pi]` for which `sqrt(2sin^4 x+18cos^2 x)-sqrt(2cos^4 x+18sin^2 x)=1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of x in [0, 2pi] for which |sqrt(2"sin"^(4)x + 18"cos"^(2) x) -sqrt(2"cos"^(4)x + 18"sin"^(2)x)| = 1, is

The number of x in [0, 2pi] for which |sqrt(2"sin"^(4)x + 18"cos"^(2) x) -sqrt(2"cos"^(4)x + 18"sin"^(2)x)| = 1, is

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

For x in(-pi,pi) find the value of x for which the given equation (sqrt(3)sin x+cos x)^(sqrt(sqrt(3)sin2x-cos2x+2))=4 is satisfied.