Home
Class 12
MATHS
If |(z-2)/(z+2)|=pi/6, then the locus o...

If `|(z-2)/(z+2)|=pi/6`, then the locus of `z` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

if amp (z-1)/(z+1)=pi/3 , then the locus of z is

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.

If |z-1|=2 then the locus of z is

If |(z - 4bari)/(z-2)| = 2 then the locus of z is

If Re (z^2)=2 then the locus of z is

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

If Amp ((z+2)/(z-4i))=pi/2 then the locus of z = x + iy is .