Home
Class 12
MATHS
I=int(1)/(5x^(2)-2x)*dx...

I=int(1)/(5x^(2)-2x)*dx

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(1)/((5x+4)^(2))dx

int(1)/(2x^(2)+5x+3)dx

int(1)/(2x^(2)+5x+3)dx

Find int(1)/(sqrt(5x^(2)-2x))dx .

I=int(1-x^(2))/(x(1-2x))dx

Evaluate: (i) int(x^(2)+x+5)/(3x+2)dx (ii) int(2x+3)/((x-1)^(2))dx

Find the following integrals : (i) int(dx)/(x^(2)-6x+13)int(dx)/(3x^(2)+13x-10)int(dx)/(sqrt(5x^(2)-2x))

Evaluate: int_(0)^(1)|5x-3|dx( ii) int_(0)^( pi)|cos x|dx( iii) int_(-5)^(5)|x-2|dx( iv )int_(-1)^(1)e^(|x|)dx(v)int_(0)^(2)|x^(2)+2x-3|dx(v)int_(1)^(4)(|x-1|+|x-2|+|x-3|)dx( vi) int_(1)^(2)|x^(3)-x|dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then

If I_(1) = int_0^(1) 2^(x^(2)) dx, I_(2) = int_0^(1) 2^(x^(3)) dx, I_(3) = int_1^(2) 2^(x^(2)) dx, I_(4) = int_1^(2) 2^(x^(3)) dx then,