Home
Class 11
MATHS
sin x+cos x)^(2)...

sin x+cos x)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

int(2sin x)/((3+sin2x))dx is equal to (1)/(2)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+c(1)/(2)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(2sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+c(1)/(4)ln|(2+sin x-cos x)/(2-sin x+cos x)|-(1)/(sqrt(2))tan^(-1)((sin x+cos x)/(sqrt(2)))+cnone of these

"int e^(sin x)((x cos^(2)x-sin x)/(cos^(2)x))dx

int (sin^2 x - cos^2 x)/(sin^2 x cos^2 x) dx is equal to :

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

lim_(x=0)(log_(sin x)cos x)/(log_(sin((x)/(2)))cos((x)/(2)))

The value of int_( is equal to )^(x sin x+cos x)*((x^(2)cos^(2)x-x sin x+cos x)/(x^(2)cos^(2)x))dx

Solve sin 3x + sin x + 2 cos x = sin 2x + 2 cos^(2)x

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is