Home
Class 11
MATHS
y(2xy+e^(x))dx=e^(x)dy...

y(2xy+e^(x))dx=e^(x)dy

Promotional Banner

Similar Questions

Explore conceptually related problems

y(2xy+e^(x))^(x)dx-e^(x)dy=0

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

(b) Solve: (x.e^(xy)+2y)dy+y.e^(xy)dx=0

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If e^(x)+ e^(y) = e^(x+y), find dy/dx.