Home
Class 11
MATHS
Show that the equation of the circle pas...

Show that the equation of the circle passing through (1, 1) and the points of intersection of the circles `x^2+y^2+13 x-13 y=0` and `2x^2+2y^2+4x-7y-25=0` is `4x^2+4y^2+30 x-13 y-25=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the circle passing throught (1,1) and the points of intersection of the circles x^(2)+y^(2)+13x-3y=0 and 2x^(2)+2y^(2)+4x-7y-25=0

The equation of the circle passing through the origin and the points of intersection of the two circles x^(2)+y^(2)-4x-6y-3=0,x^(2)+y^(2)+4x-2y-4=0 is

Find the equation of the circle passing through the points of intersection of the circles x^(2)+y^(2)-2x-4y-4=0 and x^(2)+y^(2)-10x-12y+40=0 and whose radius is 4.

The equation of the circle passing through the points of intersection of the circles x^(2)+y^(2)+6x+4y-12=0,x^(2)+y^(2)-4x-6y-12=0 and having radius sqrt(13) is

The equation of the circle passing through the points of intersection of the circles x^(2)+y^(2)+6x+4y-12=0,x^(2)+y^(2)-4x-6y-12=0 and having radius sqrt(13)" is

The equation of the circle passing through the points of intersection of the circles x^(2)+y^(2)+6x+4y-12=0 , x^(2)+y^(2)-4x-6y-12=0 and having radius sqrt(13) is

The equation of the circle passing through the points of intersection of the circles x^(2)+y^(2)+6x+4y-12=0 , x^(2)+y^(2)-4x-6y-12=0 and having radius sqrt(13) is