Home
Class 12
MATHS
x=sqrt(1+t^(2)),y=sqrt(1-t^(2))...

x=sqrt(1+t^(2)),y=sqrt(1-t^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

if x=sqrt((1-t^(2))/(1+t^(2))),y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (dy)/(dx)

If x=sqrt((1-t^(2))/(1+t^(2))) and y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (d^(2)y)/(dx^(2))=

If x = sqrt((1-t^(2))/(1+t^(2)) and y = (sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2)) + sqrt(1-t^(2))) then (d^(2)y)/(dx^(2)) =

If y=tan^(-1) [(sqrt(1+t^(2))+sqrt(1-t^(2)))/(sqrt(1+t^(2))-sqrt(1-t^(2)))] , find the value of (dy)/(dt) .

If x = sqrt((1 - t^2)/(1 + t^2)), y = (sqrt(1 + t^2) - sqrt(1 - t^2))/(sqrt(1 + t^2) + sqrt(1 -t^2)) then (dy)/(dx) =

y sqrt(1-x^(2))+x sqrt(1-y^(2))=1,prov et h a t (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

Find (dx)/(dt) when x = sin^-1(t.sqrt(1-t) +sqrt(t) sqrt(1-t^2)) .

The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),y=(2t)/(1+t^(2)) is

The conic having parametric representation x=sqrt3((1-t^(2)/(1+t^(2))),y(=2t)/(1+t^(2)) is