Home
Class 12
MATHS
[int((2x+1))/((x^(2)+4x+1)^((3)/(2)))dx]...

[int((2x+1))/((x^(2)+4x+1)^((3)/(2)))dx],[[" (1) "(x^(3))/((x^(2)+4x+1)^(1/2))+c," (2) "(x)/((x^(2)+4x+1)^(1/2))+c],[" (3) "(x^(2))/((x^(2)+4x+1)^(1/2))+c," (4) "(1)/((x^(2)+4x+1)^(1/2))+c]]

Promotional Banner

Similar Questions

Explore conceptually related problems

int((2x+1))/((x^(2)+4x+1)^(3//2))dx= a) (x^(3))/((x^(2)+4x+1)^(1//2))+C b) (x)/((x^(2)+4x+1)^(1//2))+C c) (x^(2))/((x^(2)+4x+1)^(1//2))+C d) (1)/((x^(2)+4x+1)^(1//2))+C

int(4x+1)/(2x^(2)+x+1)dx

[int((x+x^(3))^(1/3))/(x^(4))dx" is equal to "],[[" (1) "(3)/(8)((1)/(x^(2))-1)^(4/3)+c," (2) "-(3)/(8)[(1+(1)/(x^(2)))^(4/3)]+c],[" (3) "(1)/(8)(1+(1)/(x^(2)))^(4/3)+c," (4) "(1)/(8)((1)/(x^(2))-1)^(4/3)+c]]

int(x^(4)-2x^(2)+4x+1)/(x^(3)-x^(2)-x+1)dx

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C

If "int(x^(1/3))/((1+x^(2/3))^(3))dx=(3)/(4)(x^(a))/((1+x^(2/3))^(2))+c ," then "a=

If int((2x+1))/(x^(4)+2x^(3)+x^(2)-1)dx=Alogabs((x^(2)+x+1)/(x^(2)+x-1))+c , then

If int((2x+1))/(x^(4)+2x^(3)+x^(2)-1)dx=Alogabs((x^(2)+x+1)/(x^(2)+x-1))+c , then

int (4x)dx/((x+1)^2(x-1)^2 =

lim_(x to 1/2)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1)) .