Home
Class 12
MATHS
Prove that (d)/(dx){2x tan^(-1)x-log (1+...

Prove that `(d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) {Tan ^(-1) ""(2x)/(1- x ^(2))}=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx) {Sin ^(-1) ""(2x)/(1+ x ^(2))}=

(d)/(dx) {Sec ^(-1) ""(1)/( 1- 2x ^(2))}=

(d)/(dx)=(-2x^(2)) =

d/(dx)[tanh^(-1)((2x)/(1+x^2))]=

Prove that (d)/(dx)[(sin2x+1/(cos^2x)]

(d)/(dx)(3x^(2)+2x)=

(d)/(dx) "" tan^(-1) ((2e^(x))/(1 - e^(2x)))=