Home
Class 12
MATHS
[" If "x=e^(cos2t)" and "y=e sin2t," ,th...

[" If "x=e^(cos2t)" and "y=e sin2t," ,then prove that "],[,(dy)/(dx)=-(y)/(x)*(log x)/(log y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x,=e^(cos2t) and y=e^(sin2t), prove that (dy)/(dx),=-(y log x)/(x log y)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)