Home
Class 9
MATHS
" Q11.Show that: "(x^(a(b-c)))/(x^(b(a-c...

" Q11.Show that: "(x^(a(b-c)))/(x^(b(a-c)))-:((x^(b))/(x^(a)))^(c)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (x^(a(b-c)))/(x^(b(a-c)))-:((x^(b))/(x^(a)))^(c)=1((x^(a+b))(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Show that: (i) (x^(a(b-c)))/(x^(b(a-c)))-:((x^b)/(x^a))^c=1,

Show that : (x^(a(b-c)))/(x^(b(a-c)))*(x^(b))/(x^(a)))^(c)=1((x^(a+b))^(2)(x^(b+c))(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2(x^(b+c))^2 (x^(c+a))^2)/((x^a x^b x^c)^4)=1

Show that : (i) x^(a(b-c))/(x^(b(a-c)))/((x^b)/(x^a))^c=1 , (ii) ((x^(a+b))^2(x^(b+c))^2(x^(c+a))^2)/((x^a x^b x^c)^4)=1

If x is a positive real number and the exponents are rational numbers,show that: ((x^(a))/(x^(b)))^(a+b-c)((x^(b))/(x^(c)))^(b+c-a)((x^(c))/(x^(a)))^(c+a-b)=1

Prove that. (i) sqrt(x^(-1) y) .sqrt(y^(-1) z) . Sqrt(z^(-1) x) = 1 (ii) ((1)/(x^(a-b)))^((1)/(a-c)).((1)/(x^(b-c))).((1)/(x^(c-b)))^((1)/(c-b))= 1 (iii) (x^(a(b-c)))/(x^(b(a-c))) div ((x^(b))/(x^(a))) (iv) ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))

Assuming that x is a positive real number and a,b,c are rational numbers,show that: ((x^(a))/(x^(b)))^((1)/(ab))((x^(b))/(x^(c)))^((1)/(bc))((x^(c))/(x^(a)))^((1)/(ac))=1

Show that: (x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1{(x^(a)-a^((-1)))^((1)/(a-1))}^((a)/(a+1))=x

Show that (x^(a+b))^(a-b)times(x^(b+c))^(b-c)times(x^(c+a))^(c-a)=1