Home
Class 12
MATHS
int(-4)^(1)log(e)((9-x)/(9+x))...

int_(-4)^(1)log_(e)((9-x)/(9+x))

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(4)^(4)log((9-x)/(9+x))dx equals

int_(4)^(4)log((9-x)/(9+x))dx equals

int_(-3) ^(3) log ((9-x)/(9+x)) dx=

int_(1)^(x)log_(e)[x]dx

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is-

If alpha=int_(0)^(1)(e^(9x+3tan^(-1)x))((12+9x^(2))/(1+x^(2)))dx wheretan ^(-1) takes only principal values,then the value of (log_(e)|1+alpha|-(3 pi)/(4))is

if int_(alpha)^( alpha+1)(dx)/((x+alpha)(x+alpha+1))=log_(e)((9)/(8)) then number of values of alpha is

If int_(log_(e^(2)))^(x)(e^(x)-1)^(-1)dx="log"_(e )(3)/(2) then the value of x is