Home
Class 14
MATHS
(x+1)(dy)/(dx)-ny=e^(x)(x+1)^(n+1)...

(x+1)(dy)/(dx)-ny=e^(x)(x+1)^(n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-y)(1-(dy)/(dx))=e^(x)

Solve (1)/(x)(dy)/(dx)+y.e^(x)=e^((1-x)e^(x))

The solution of (1)/(x)(dy)/(dx) + y e^(x) = e^((1-x)^(e^(x))) is

(dy)/(dx)=(e^(2x)+1)/(e^(x))

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

Find (dy)/(dx) : y = e^(x+1)-5^(x+1)+e^(logx)+log_(a)x+logx^(a)

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

The solution of the differential equation (1+e^(x))y(dy)/(dx) = e^(x) when y=1 and x = 0 is

Find (dy)/(dx) of e^x(1+x)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0