Home
Class 11
MATHS
int(pi/6)^( pi/3)(dx)/(1+sqrt(tan x))" i...

int_(pi/6)^( pi/3)(dx)/(1+sqrt(tan x))" is equal to "pi/6

Promotional Banner

Similar Questions

Explore conceptually related problems

int _(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to :

Statement - 1 : The value of the integral int_(pi/6)^(pi/3) dx/(1 + sqrttanx) is equal to pi/6 Statement-2 : int_a^b f(x) = int_a^b f(a + b - x) dx

(36)/(pi)int_(pi/6)^( pi/3)(dx)/(1+sqrt(cot x)) equals to

The value of int_((pi)/(6))^((pi)/(3)) (dx)/(1+sqrt(tan x)) is equal to -

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Prove that the value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(cot x)) is pi//6 .

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))