Home
Class 11
MATHS
" If tan A and tan B are the roots of "x...

" If tan A and tan B are the roots of "x^(2)-2x-1=0," then "sin^(2)(A+B)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Given tan A and tan B are the roots of x^(2)-ax+b=0 . The value of sin^(2)(A+B) is

Given tan A and tan B are the roots of x^(2)-ax+b=0 ,The value of sin^(2)(A+B) is

If tan A backslash and backslash backslash tan B are the roots of x^(2)-2x-1=0, then sin^(2)(A+B) is (A)(1)/(sqrt(2))(B)(sqrt(3))/(2)(C)(1)/(2)(D)0

If tan A and tan B are the roots of x^(2)-px+q=0, then the value of sin^(2)(A+B) is

If tan A, tan B are the roots of x^(2)-2x+2=0 then sin^(2)(A+B)=(i)(4)/(5) (ii) (1)/(2)(iii)(3)/(5)(iv)(1)/(4)

IF tan A , tan B are the roots of x ^2 -px+q=0 , the value of sin ^2(A+B) is

Given tan A and tan B are the roots of x^2-ax + b = 0 , The value of sin^2(A + B) is

Statement-1: If tanA, tanB are the roots of the equation x^(2)-ax-1=0,then sin^(2)(A+B)=(a^(2))/(1+a^(2)) Statement-2: sin^(2)(A+B)=(tan^(2)(A+B))/(1+tan^(2)(A+B))