Home
Class 11
MATHS
If tanA\ "and" \ tanB are the roots of x...

If `tanA\ "and" \ tanB` are the roots of `x^2-2x-1=0`, then `sin^2(A+B)` is (A) `1/(sqrt(2))` (B) `sqrt(3)/2` (C) `1/2` (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A backslash and backslash backslash tan B are the roots of x^(2)-2x-1=0, then sin^(2)(A+B) is (A)(1)/(sqrt(2))(B)(sqrt(3))/(2)(C)(1)/(2)(D)0

If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 then evaluate 4sin^(2)(A+B)-7sin(A+B)*cos(A+B)+cos^(2)(A+B) .

If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 then evaluate 4sin^(2)(A+B)-7sin(A+B)*cos(A+B)+cos^(2)(A+B) .

Statement-1: If tanA, tanB are the roots of the equation x^(2)-ax-1=0,then sin^(2)(A+B)=(a^(2))/(1+a^(2)) Statement-2: sin^(2)(A+B)=(tan^(2)(A+B))/(1+tan^(2)(A+B))

Statement-1: If tanA, tanB are the roots of the equation x^(2)-ax-1=0,then sin^(2)(A+B)=(a^(2))/(1+a^(2)) Statement-2: sin^(2)(A+B)=(tan^(2)(A+B))/(1+tan^(2)(A+B))

If tanA, tanB and tan C are the roots of equation x^(3)-alpha x^(2)-beta=0 ,and (1+tan^(2)A)(1+tan^(2)B)(1+tan^(2)C)=k-1 ,then k is equal to:

If tanA, tanB are the roots of the quadratic abx^2-c^2x+ab=0, where a,b,c are the sides of a triangle. then

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)