Home
Class 12
MATHS
[" Show that the vectors "],[qquad (1)/(...

[" Show that the vectors "],[qquad (1)/(7)(2hat i+3hat j+6hat k),(1)/(7)(3hat i-6hat j+2hat k)" and "(1)/(7)(6hat i+2hat j-3hat k)]

Promotional Banner

Similar Questions

Explore conceptually related problems

12).Show that the vector hat i+hat j+hat k is equally inclined with the coordinate axes.( 13 show that the vectors vec a=(1)/(7)(2hat i+3hat j+6hat k),vec b=(1)/(7)(3hat i-6hat j+2hat k),vec c=(1)/(7)(6hat i+2hat j-3hat k) are mutually perpendicular unit vectors.

Show that the vector vec a=(1)/(7)(2hat i+3hat j+6hat k),vec b=(1)/(7)(3hat i-6hat j+2hat k),vec c=(1)/(7)(6hat i+2hat j-3hat k) are mutually perpendicular unit vectors.

Show that the vectors vec a=(1)/(7)(2hat i+3hat j+6hat k),vec b=(1)/(7)(3hat i-6hat j+2hat k),vec c=(1)/(7)(6hat i+2hat j-3hat k) are mutually perpendicular unit vectors.

The vector vec a=(1)/(7)(2hat i+3hat j+6hat k),vec b=(1)/(7)(3hat i-6hat j+2hat k),vec c=(1)/(7)(6hat i+2hat j-3hat k) form

Show that each of the given three vectors is a unit vector: (1)/(7)(2hat i+3hat j+6hat k),(1)/(7)(3hat i-6hat j+2hat k),(1)/(7)(6hat i+2hat j-3hat k) Also,show that they are mutually perpendicular to each other.

Given a=(1)/(7)(2hat i+3hat j+6hat k),vec b=(1)/(7)(3hat i-6hat j+2hat k),vec c=(1)/(7)(6hat i+2hat j-3hat k),hat i,hat j,hat k being a right handed orthogonal system of unit vectors in space,show that vec a,vec b and vec c is also another system.

Show that each of the given three vectors is a unit vector. 1/7(2hat(i)+3hat(j)+6hat(k)),(1)/(7)(3hat(i)-6hat(j)+2hat(k)),(1)/(7)(6hat(i)+2hat(j)-3hat(k))

The sides of a parallelogram are 2hat i+4hat j-5hat k and hat i+2hat j+3hat k .The unit vector parallel to one of the diagonals is a.(1)/(7)(3hat i+6hat j-2hat k) b.(1)/(7)(3hat i-6hat j-2hat k) c.(1)/(sqrt(69))(hat i+6hat j+8hat k) d.(1)/(sqrt(69))(-hat i-2hat j+8hat k)

Let ABCD be the parallelogram whose sides AB and AD are represented by the vectors 2 hat i +4 hat j-5 hat k and hat i+2 hat j+3 hat k.Then if vec a is a unit vector parallel to AC then = (a) 1/3(3 hat i-6 hat j-2 hat k) (b) 1/3(3 hat i +6 hat j+2 hat k) (c) 1/7(3 hat i +6 hat j+2 hat k) (d) 1/7(3 hat i +6 hat j-2 hat k)

a=2hat i+3hat j+6hat k,b=3hat i-6hat j+2hat k and c=6hat i+2hat j-3hat k are mutually perpendicular.