Home
Class 12
MATHS
[1y=x log[(px)^(-1)+p^(-1)]," prove that...

[1y=x log[(px)^(-1)+p^(-1)]," prove that "],[x(x+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-y+1=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Ify=x log[(ax)^(-1)+a^(-1)], prove that x(x+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=y-1

If y=x ln((ax)^(-1)+a^(-1)) prove that x(x+1)(d^(2)y)/(dx^(2))+(dy)/(dx)=y=1

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If y=xln((a x)^(-1)+a^(-1)) prove that x(x+1)(d^2y)/(dx^2)+(dy)/(dx)=y-1

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

If y=log[x+sqrt(x^(2)+1)] , then prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0 .