Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `a cos theta + b sin theta = c`, then prove that `cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are the solutions of a cos theta+b sin theta=c , then prove that : cos (alpha- beta)= (2c^2- (a^2+b^2))/(a^2+b^2) .

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha, beta are the solutions of a cos 2theta + b sin 2theta = c , then tan alpha tan beta=

If alpha and beta are distinct roots of the equation : a tan theta+b sec theta=c , prove that tan (alpha+ beta)= (2ac)/(a^2-c^2) .

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .