Home
Class 10
MATHS
2cos^(2)theta-cos^(4)theta+sin^(4)theta=...

2cos^(2)theta-cos^(4)theta+sin^(4)theta=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

The minimum value of y=(1+sin^(2)theta+sin^(4)theta+sin^(6)theta+...)+(1+cos^(2)theta+cos^(4)theta+cos^(6)theta+ .) in theta in(0,(pi)/(2)) is

If : sin^(4)theta+cos^(4)theta+sin^(2)theta*cos^(2)theta=1-u^(2), "then" : u=

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

1+sin^(2)theta,sin^(2)theta,sin^(2)thetacos^(2)theta,1+cos^(2)theta,cos^(2)theta4sin4 theta,4sin4 theta,1+4sin4 theta]|=0

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)