Home
Class 12
MATHS
ftheta1,theta2,theta3,theta4,theta5 in (...

`ftheta_1,theta_2,theta_3,theta_4,theta_5 in (0,pi/2),` satisfying `tantheta_1 tantheta_2 tantheta_3 tantheta_4 tantheta_5=1` then maximum value of `cos theta_1 cos theta_2 costheta_3 costheta_4 costheta_5` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If tantheta+tan2theta+tantheta. tan2theta=1 then theta =

If tantheta=1 , then the value of (8sintheta+5cos theta)/(sin^(3)theta-2cos^(3)theta+7costheta) is

sin2 theta tantheta+1= sin 2theta + tantheta

If 3 cos theta-4sintheta=2costheta+sintheta find tantheta .

If sintheta=costheta then the value of 2tantheta+cos^2theta is

(tantheta+2)(2 tantheta+1) = 5 tantheta+ sec^(2)theta

Find the minimum value of 2costheta+1/sin theta+sqrt2tantheta , where theta is acute angle.

Find the minimum value of 2costheta+1/sin theta+sqrt2tantheta , where theta is acute angle.

given that tan(theta_1 + theta_2) = (tantheta_1 + tantheta_2)/(1-tantheta_1*tantheta_2) find (theta_1+theta_2) when tantheta_1 =1/2 , tantheta_2=1/3

If 3tantheta+4=0 where (pi)/(2)lt thetaltpi , then the value of 2cot theta-5costheta-sintheta .