Home
Class 12
MATHS
f(x)=x^(3)-3x+5,f(1.99) is equal to...

`f(x)=x^(3)-3x+5,f(1.99)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+3)=x^(2)-1, then f(x) is equal to

If f(x)=x^(3)+3x^(2)+3x , then f(x+1) is equal to

(2) If f(x)=x+(1)/(x) , then [f(x)]^(3)-f(x^(3)) is equal to

Let f:RtoR be a mapping defined by f(x)=x^(3)+5 , then f^(-1)(x) is equal to :

The function f(x)=3x^(3)-36x+99 is increasing for

If f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^(100) then f'(1) is equal to

if f(x)=|[x-3,2x^2-18,3x^3-81],[x-5,2x^2-50,4x^3-500],[1,2,3]| then f(1)f(3)+f(3)f(5)+f(5)f(1) is equal to

If f(x)= |{:(x-3,2x^(2)-18,3x^(3)-81),(x-5,2x^(2)-50,4x^(3)-500),(1,2,3):}| then f(1).f(3)+f(3).f(5)+f(5).f(1) is equal to :

If f(x)=x^(100)+x^(99)+……+x+1 , then f(1) is equal to

If f:R to R be a mapping defined by f(x)=x^(3)+5 , then f^(-1) (x) is equal to