Home
Class 10
MATHS
If A and B are acute angles such that ta...

If `A` and `B` are acute angles such that `tanA=(1)/(3)`, `tanB=(1)/(2)` and `tan(A+B)=(tanA+tanB)/(1-tanAtanB)`, show that `A+B=45^(@)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are acute angles such that tanA=(1)/(3) , tanB=(1)/(2) and tan(A+B)=(tanA+tanB)/(1-tanAtanB) , Then find the value of A+B .

If A and B are acute angles such that tanA=1/2,tanB=1/3 and tan(A+B)=(tanA+tanB)/(1-tanAtanB) , find A+B

If A and B are acute angles such that tanA=1/2 , tanB=1/3 and tan(A+B)=(tanA+tan\ B)/(1-tanAtanB) , find A+B .

If tanA=1/3 and tanB=1/7 , show that 2A+B=45^@

If A and B are positive acute angles and sinA =3/5,cosB=(15)/(17) , find the value of (tanA-tanB)/(1+tanAtanB) .

Prove that- sin(A-B)/sin(A+B)= (tanA-tanB)/(tanA+tanB)

Prove that- sin(A-B)/sin(A+B)= (tanA-tanB)/(tanA+tanB)

If x=180^(@) ,A = (pi)/(3) and B=(pi)/(6) Prove that tan(A-B)= (tanA-tanB)/(1+tanAtanB)

If tanA=(1)/(2) and tanB=(1)/(3) , then tan(2A+B) is equal to

If tanA=(1)/(2) and tanB=(1)/(3) , then tan(2A+B) is equal to