Home
Class 12
MATHS
The value of (sqrt2 + sqrt barz)^4+ and...

The value of `(sqrt2 + sqrt barz)^4+ and (sqrt2 - sqrt barz)^4` are respectively(where `z = 4+ 3 sqrt20 i, i = sqrt-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt3+sqrt2)^(4)- (sqrt3-sqrt2)^(4) =

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

Find the value of: (i) (sqrt 3 + 1)^4 - (sqrt 3 - 1)^4 (ii) (2 + sqrt 5)^5 + (2 - sqrt 5)^5

The value of (1-sqrt2) + (sqrt2-sqrt3)+(sqrt3-sqrt4)+ ............ + (sqrt15-sqrt16) is

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

Simplify: (1)/(sqrt2 +1) + (1)/(sqrt3 + sqrt2) + (1)/(sqrt4 + sqrt3)

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).