Home
Class 13
MATHS
" If "y=x log((x)/(a+bx))," prove that "...

" If "y=x log((x)/(a+bx))," prove that "x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x log{(x)/((a+bx))], then show that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

(a+bx)e^((y)/(x))=x, Prove that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

If y=xlog(x/(a+bx)) , then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y =x log (x/(a+bx)) then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2 .

If y=x log((x)/(a+bx)) then x^(2)(d^(2)y)/(dx^(2))=(x((dy)/(dx))-y)^(m) where

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

If y= x log ((x)/(a + bx)) prove that (d^(2)y)/(dx^(2)) = (1)/(x) ((a)/(a+ bx))^(2)

If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2