Home
Class 12
MATHS
Prove that the distance of the roots of ...

Prove that the distance of the roots of the equation `|sintheta_1|z^3+|sintheta_2|z^2+|sintheta_3|z+|sintheta_4|=3fromz=0` is greater than `2//3.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the distance of the roots of the equation |sintheta_1|z^3+|sintheta_2|z^2+|sintheta_3|z+|sintheta_4|=|3| from z=0 is greater than 2//3.

Prove that the distance of the roots of the equation |sintheta_1|z^3+|sintheta_2|z^2+|sintheta_3|z+|sintheta_4|=|3| from z=0 is greater than 2//3.

Prove that the distance of the roots of the equation |sintheta_1|z^3+|sintheta_2|z^2+|sintheta_3|z+|sintheta_4|=|3| from z=0 is

The general values of theta satisfying the equation 2sin^2theta-3sintheta-2=0 is (n in Z)dot

Prove the following {(1-sintheta) /costheta}^2=(1-sintheta) /(1+sintheta)

If cos^2theta-sintheta=1/4 then sintheta=?

If sintheta_1+sintheta_2+sintheta_3=3, evaluate : costheta_1+costheta_2+costheta_3 .

Prove that sintheta(cosectheta-sintheta)=cos^2theta .

if sintheta+costheta=3/2 then find sintheta.costheta

Prove that sintheta/(1+costheta)+sintheta/(1-costheta)=2/sintheta .