Home
Class 12
MATHS
Positive value of 'a' so that the defini...

Positive value of 'a' so that the definite integral `int_a^(a^2)(dx)/(x+sqrtx)` achieves the smallest value is `(i) tan^2(pi/8) (ii) tan^2((3pi)/8) (iii) tan^2(pi/12) (iv) 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Positive value of 'a' so that the definite integral int_(a)^(a^(2))(dx)/(x+sqrt(x)) achieves the smallest value is (i)tan((pi^(2))/(12))

Evaluate the definite integrals int_(0)^((pi)/(4)tan x)dx

Evaluate the definite integrals int_(0)^((pi)/(4))(tan x)dx

The value of definite integral int_0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrtx)= is

The value of the definite integral int_(pi//24)^(5pi//24)(dx)/(1+root(3)(tan2x)) is :

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

Evaluate the definite integrals int_(0)^( pi)(x tan x)/(sec x+tan x)dx

The value of the definite integral int_(0)^((pi)/(2))(dx)/(tan x+cot x+cos ecx+sec x) is