Home
Class 12
MATHS
int(0)^(1)tan(sin^(-1)x)dx equals...

`int_(0)^(1)tan(sin^(-1)x)dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)tan(sin^(-1)x)dx is equals

int_(0)^(1)x tan^(-1)x dx=

int_(0)^(1)x cos(tan^(-1)x)dx

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

The value of Lt_(t rarr0)(1)/(t)(int_(0)^( pi)tan(t sin x)dx) equals

int tan(sin^(-1)x)dx is equal to

int_(0)^(1) x tan^(-1) x " "dx =