Home
Class 12
MATHS
int(e^(x))/(x+1)[1+(x+1)log(x+1)]dx equa...

`int(e^(x))/(x+1)[1+(x+1)log(x+1)]dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(e)(e^(x))/(x)(1+x log x)dx

int e^(x)(x+ln x)(x+1)dx

int _( log 1//2 ) ^( log 2) sin { (e ^(x) -1)/( e ^(x ) +1 )}dx equals

int(e^(x)(x log x+1))/(x)dx is equal to

inte^(-x)log(e^x+1)dx

int(1)/(x^(2)-1)ln((x-1)/(x+1)) dx equals:

int(log(1+x))/(1+x)dx

int(log(1-x))/(1-x)dx

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to